
Week 3 Exercises (ECE 598 DA)

Exercise (Understanding DP Definition). Let A be a mechanism that simply outputs the
entire dataset x (an identity function with no randomness). Argue why A is not differentially private
for any reasonable ε if the dataset has more than one possible value. Then contrast this with a
trivial mechanism that outputs nothing (or just random noise independent of x) and show that one
is differentially private (with ε = 0). What does this say about the role of randomness and utility in
DP?

Exercise (Global Sensitivity and Laplace Noise). A researcher wants to publish the
average income of individuals in a database using ε = 1 differential privacy. Each individual’s
income xi is in a known range [0, $100,000]. The query function is f(x) = 1

n

∑n
i=1 xi.

1. What is the global sensitivity ∆1(f) of the average? (Hint: consider two databases that differ
in one person’s income.)

2. Describe the Laplace mechanism for releasing the average. What noise scale b (in dollars)
should be used?

3. If n = 1000, roughly how large is the noise standard deviation? Would adding Laplace noise
with that scale significantly distort the average for large n?

Exercise (Sequential vs Parallel Composition). A data analyst wants to publish two
statistics about a dataset of 10,000 people: (A) the total number of individuals who have a certain
disease, and (B) the total number of individuals who have a specific genetic marker. She uses
the Laplace mechanism for each, with εA = 0.5 and εB = 0.5 (and δ = 0 for both for simplicity).
Consider two scenarios:

• Scenario 1: Both queries are on the same population of all 10,000 individuals.

• Scenario 2: Query A is asked on a subgroup of 5,000 individuals (cohort 1) and Query B on
a disjoint subgroup of the other 5,000 individuals (cohort 2).

In each scenario, what is the overall privacy guarantee (εoverall, δoverall) for releasing both A and
B? Explain the difference.

Exercise (Advanced Composition Bound). Suppose a company wants to run k = 100
queries on a database with each query run under (ε0 = 0.1, δ0 = 10−6)-DP. Using the basic
composition theorem, the worst-case privacy after 100 queries would be (100 × 0.1, 100 × 10−6) =
(10, 10−4)-DP. Using the advanced composition theorem, we can achieve a tighter bound. (a)
Compute ε∗ for k = 100, ε0 = 0.1, and choose δ′ = 10−6 as an additional slack. Use the formula
ε∗ =

√
2k ln(1/δ′)ε0 + kε0(eε0 − 1). (b) Compare ε∗ with the basic bound of 10. (c) What is the

overall δ in the advanced composition scenario?
Exercise (Moments Accountant / RDP Conceptual). You have a mechanism that at each

query adds Gaussian noise with variance σ2 (for simplicity, say each query is a counting query with
∆2 = 1). You run k such queries on the same data. Explain how you would use Rényi Differential
Privacy to account for the overall privacy loss. Specifically: (a) If each query is (α, ε̄0)-RDP, what
is the RDP of k queries? (b) How do you convert the final RDP guarantee to an (ε, δ)? (c) Why
might this approach yield a smaller ε than just using the basic (ε, δ) composition?


