
Week 6 Exercises (ECE 598 DA)

Exercise (Randomized Response under LDP): Suppose each user has a bit xi ∈ {0, 1}
and applies randomized response: with probability p = eε

1+eε they report their true bit, and with
probability 1 − p they flip it.

1. Show that this mechanism satisfies ε-local differential privacy.

2. Suppose n users participate. Derive an unbiased estimator of the true mean µ = 1
n

∑
i xi from

the randomized reports, and compute its variance.

Exercise (Shuffling Amplification): Consider n users each applying an ε0-LDP randomizer
Ri(xi). The outputs are passed through a uniformly random shuffler before the server sees them.

1. State an informal privacy amplification by shuffling theorem.

2. Give a proof sketch (at a high level) of why shuffling amplifies privacy.

Exercise (Sensitivity in Secure Aggregation): Suppose n users each have data xi ∈ [0, 1],
and a secure aggregation protocol computes the sum S = ∑

i xi with Laplace noise Lap(0, 1/ε)
added.

1. Argue that the global sensitivity of S with respect to changing one xi is 1.

2. Show that the noised aggregate S̃ = S + Lap(0, 1/ε) is (ε, 0)-DP.

3. Derive a (1 − β) high-probability additive error bound for S̃.

Exercise (Federated Learning with DP-SGD): In DP-SGD, each client’s per-example
gradient is clipped to norm C before adding Gaussian noise.

1. Explain formally why clipping is necessary for bounding sensitivity of the (average) gradient.

2. Consider a single round without subsampling (all n clients used). Let the per-example clipped
gradients be ḡi with ∥ḡi∥2 ≤ C. The server releases

g̃ = 1
n

n∑
i=1

ḡi + N (0, σ2C2I).

Prove that this is (ε0, δ0)-DP (central model) by calibrating σ using the Gaussian mechanism,
and give the resulting high-probability error.

3. Briefly discuss how Poisson subsampling with sampling rate q changes the per-round privacy
(amplification by sampling).


