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Technologies and Security 

Tools



The Spectrum of Data Marketplace Architectures
Centralized Data Storage (Data is 
Pooled)

Distributed Data Storage (Data 
Stays Sovereign)

Centralized Governance (Single, 
Trusted Arbiter)

The Traditional Hub
● Classic data warehouse 

model 
● High trust in one operator 

required

The Federated Orchestrator 
● Data is federated, not 

pooled
● A central company still 

manages rules & access

Decentralized Governance 
(Automated, "Smart" Arbiter)

The Governed Pool
● Data is pooled, but 

governed by 
code/community

● A niche but emerging model

⭐ The Sovereign Exchange 
● Data Sovereignty by Design
● Transaction Integrity via 

Arbiter



The Distributed Attack Surface: A Lifecycle View
While a distributed model solves the central honeypot 
problem, it introduces new, subtle vulnerabilities across 
the entire transaction lifecycle.

The initial Selection Mechanism is the most critical point 
of failure. If a buyer is deceived here, the security of the 
rest of the process is irrelevant.

Therefore, our work focuses on this phase: securing the 
mechanisms for data Valuation and Retrieval.



The Security Gauntlet: A Marketplace Under Siege
Threat 
Category

The Adversary's Goal

Privacy Attacks To reconstruct 
sensitive, private 
training data from the 
shared gradient.

Integrity 
Attacks

To corrupt the model's 
performance or install a 
hidden, malicious 
trigger.



The Security Gauntlet: A Marketplace Under Siege
Threat 
Category

The Adversary's Goal

Privacy Attacks To reconstruct 
sensitive, private 
training data from the 
shared gradient.

Integrity 
Attacks

To corrupt the model's 
performance or install a 
hidden, malicious 
trigger.

The Fundamental Dilemma:
How can a Buyer trust gradients without seeing the 
private data they were generated from?



Where Economics Meets Security
In the real world, the marketplace can't just accept everything. Two economic 
realities force it to be selective:

● High Computational Cost: It's expensive for Sellers to generate gradients.
● Limited Buyer Budget: The Buyer cannot afford to purchase every gradient.

This means every marketplace must have an Economic and Quality Filter—a 
selection mechanism to decide which gradients are worth buying.





Key Insight: The Filter is the New Battlefield
This selection filter, designed to ensure efficiency and quality, becomes the 
primary new attack surface.

The sophisticated adversary's goal is no longer just to create a harmful gradient, 
but to create a harmful gradient that looks beneficial to the filter.



The MartFL Lifecycle: From Request to Improvement
Request: A model owner submits a training task to the 
marketplace.

Select: The MartFL Orchestrator uses its two-phase 
filter to select the most valuable data owners.

Train: The selected owners compute gradients on 
their private data.

Improve: MartFL aggregates the gradients, ensures 
fair payment, and delivers a single, powerful update to 
the model owner.



The New Threat: Malicious Gradient Attacks
In a gradient marketplace, the threat shifts from faking value to 
actively sabotaging the training process.

A Malicious Client's Goal:

● Get paid for contributing nothing of value.
● Poison the global model, reducing its accuracy for their 

own benefit.

The Method:

Submit useless or deliberately harmful gradients instead of 
honest ones.



MartFL Defense: The Two-Phase Selection Filter
Coarse-Grained Filter (The Relevance Check):

Uses lightweight data profiles to quickly find clients whose 
data is topically relevant.

Fine-Grained Filter (The Quality & Behavior Test):

Uses a small "probe model" to test the actual utility of a 
client's contribution.



How MartFL Filters Malicious Gradients
The Fine-Grained Filter acts as a behavioral 
firewall.

It "auditions" each client by sending a small probe 
task.

An honest client provides a useful gradient, 
improving the probe model's performance. They 
pass the test.

A malicious client provides a useless or harmful 
gradient. The probe model's performance stagnates 
or drops. They fail the test and are rejected.



The Potential Flaw: Can Similarity Be Fooled?
The MartFL filtering mechanism is clever, but it relies on one critical assumption:

That "low similarity" is a reliable signal for "malicious intent."

The Critical Question:

What if a client is honest but their data is unique and valuable? Their gradient 
might be beneficial but point in a different direction, causing the system to 
mistakenly reject them.



The Potential Flaw: Can Similarity Be Fooled?
This leads to two key research questions for 
our analysis:

Robustness: How well does similarity 
filtering actually detect various malicious 
attacks?

Fairness: Does this filtering mechanism 
unfairly penalize honest clients who hold 
valuable, non-mainstream (outlier) data?



Evaluating the Filter: Marketplace Framework
To understand the true vulnerability, we must go beyond traditional ML security 
metrics, assessing the filter's impact on the entire marketplace ecosystem, 
measuring not just security, but economic health and fairness.



Key Evaluation Dimensions:
Robustness: Does the filter stop the 
attack? (Traditional Metric)

Economic Efficiency: What is the true 
cost for the buyer to achieve their 
goal?

Fairness & Stability: Are honest sellers 
treated fairly, or are they penalized?

Selection Dynamics: Who is the filter 
actually selecting, and how often is it 
fooled?



Test: Can the Marketplace Detect a Backdoor?
We simulated a Backdoor Attack to test the marketplace's 
security.

The Attack:

Goal: Install a hidden trigger in the model.

Method: Malicious sellers submit gradients from mislabeled, 
"triggered" data (e.g., cats with a white square are labeled as 
dogs).



Experimental Setup
The Adversary: A Stealthy Backdoor Attacker

The Trick: To avoid detection, the attacker doesn't poison all their data. They 
poison only a small fraction (20%) of their local dataset.

The Effect: This makes their overall gradient more similar to benign gradients, 
making it harder for a similarity-based filter to spot the manipulation.

The Goal: Pass the filter, get paid, and install a hidden backdoor.



Result



Mechanism of Failure: Why the Filter Was Fooled
Why Was the Filter 
Fooled? A Look at 
Selection Rates.



"Deceptive Efficiency" of an Attacked Market
● The Sybil-attacked market reaches 

the target accuracy with 23% less 
cost (fewer gradients purchased).

● From a purely economic standpoint, 
the attacked market looks more 
efficient. A buyer optimizing solely for 
cost would inadvertently prefer the 
compromised environment. This 
makes the attack even harder to 
detect through economic signals.



Economic Fallout: Who Really Pays the Price?
No Attack: Honest sellers earn 100% of the 
revenue.

Sybil Attack: Honest seller revenue 
plummets by 40%. Attackers successfully 
siphon off nearly a quarter of all payments

The market isn't more efficient. Attackers are 
simply crowding out and defunding honest 
contributors, creating an unsustainable 
economy.



A Core FL Challenge: Data Heterogeneity
Anyone who has worked with Federated Learning knows the biggest challenge: 
Non-IID Data.

The FL Analogy in a Marketplace:

FL "Client Selection" = Marketplace "Data Discovery"

The Goal is the Same: To select a subset of participants whose data will be most 
beneficial for the global model's objective.



The Importance of Pre-selection / Discovery:
In both FL and marketplaces, a pre-selection or discovery phase is crucial. The 
goal is to identify a pool of sellers/clients whose data distribution is most relevant 
to the task at hand.

Hypothesis: The more relevant the initial pool of sellers, the better the final model. 
But how robust is this process to attack?



Data Discovery Dilemma: Diversity vs. Security
Homogenous Data (High Relevance): The 
similarity filter works reasonably well.

Heterogeneous Data (High Diversity): As the 
data distribution of the seller pool becomes 
more diverse, the filter's ability to spot 
malicious outliers collapses.

The Consequence: The Attack Success 
Rate (ASR) climbs towards 99% because 
the filter cannot distinguish "benign 
heterogeneity" from "malicious intent."



Data Discovery Dilemma: Diversity vs. Security
Homogenous Data (High Relevance): The 
similarity filter works reasonably well.

Heterogeneous Data (High Diversity): As the 
data distribution of the seller pool becomes 
more diverse, the filter's ability to spot 
malicious outliers collapses.

The Consequence: The Attack Success 
Rate (ASR) climbs towards 99% because 
the filter cannot distinguish "benign 
heterogeneity" from "malicious intent."

The Federated Learning Takeaway:
The security of similarity-based aggregation is inversely 
proportional to data heterogeneity. This makes a secure 
data discovery and pre-screening process not just a 
nice-to-have for performance, but an absolute necessity 
for security.



Conclusion & Future Directions
Our investigation into gradient marketplaces reveals critical challenges for building secure, decentralized 
AI systems.

1. The Attack Surface Has Shifted.

The primary vulnerability is not just the model, but the marketplace's economic and selection mechanisms.

2. Standard Metrics are Deceptive.

High model accuracy and low cost can mask catastrophic security failures and unfair economic outcomes.

3. Similarity-Based Defenses are Not a Silver Bullet.

They are fundamentally vulnerable to mimicry attacks and struggle most in the realistic, heterogeneous 
environments they are designed for.



Path Forward: Building on Robust Gradient
To build truly secure and equitable marketplaces, future work must move beyond 
simple similarity checks. We need to focus on:

● Orthogonal Trust Signals: Integrating seller reputation, transaction history, 
and data provenance to make more holistic trust decisions.

● Multi-Stage Filtering: Designing a defense-in-depth pipeline that combines 
anomaly detection, similarity checks, and impact analysis.

● Incentive-Compatible Mechanisms: Creating reward and selection systems 
that are provably resilient to strategic manipulation and fairly compensate true 
value.



Differentially Private 
Task-based Search



Greedy

Kitana’s Basic Algorithm

Use sketches 

D = initial training dataset

for next augmentation 𝛂
if eval(apply A to D) is best so far

Keep 𝛼 in A
return best A

But can we enforce differential privacy?



Differential Privacy

32

Privatization: Differential Privacy(DP) Algorithm

Pr[M(D)∈S] ≤ exp(𝜖) * Pr[M(D')∈S] + 𝛿

Informally, an algorithm satisfies DP if no single record can be inferred

● Hides individuals in a dataset by adding noise to results

● Each query consumes part of a dataset’s finite budget

● Consumed budget ∝ noise added to result



Differential Privacy: Privacy Budget

33

D

A Y

a1 1

a1 2

Remaining budget: 

(𝜖, 𝛿)

SELECT SUM(Y) FROM D

Privacy budget: (𝜖, 𝛿)



Differential Privacy: Privacy Budget
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D

A Y

a1 1

a1 2

SELECT SUM(Y) FROM D

1 + 2 + 1 + noise𝜖, 𝛿 = 4.2

Remaining budget: 

(0, 0)

Privacy budget: (𝜖, 𝛿)



Differential Privacy: Privacy Budget

35

D

A Y

a1 1

a1 2

SELECT SUM(Y*Y) FROM D

Remaining budget: 

(0, 0)

Privacy budget: (𝜖, 𝛿)



Differential Privacy: Privacy Budget

36

D

A Y

a1 1

a1 2

SELECT SUM(Y*Y) FROM D

No privacy budget, cannot access

Remaining budget: 

(0, 0)

Privacy budget: (𝜖, 𝛿)



Differential Privacy Mechanisms Available

37

Search System

Provider Provider
LDPToo much noise to 

be useful

GDPUses budget on 
every model eval



Data Task
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Example: Predicting churn

Churned Customer Subscription 
Date

Yes Alice Jan 2023

No Bob May 2023

ML data augmentation search

Yes Charlie Feb 2023

No David Jan 2023

❖ More samples to union with.

Most
Visited

Unemployment
Rate

Products 6.5%

Support 3.2%

Support 8.1%

Home 6.5%

❖ More features to join with.



DP ML Data Augmentation: Input and Output
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Search System

Individuals

Search system
Aggregator

Requester Provider
Data requesters/
Data providers

Data Task Aggregator

Not trusted
Patients don’t trust Google to use 
health data for ads.

Trusted
Patients trust their health tracking 
App, like Fitbit.

Want to find health data to improve 
cardiac prediction models



DP ML Data Augmentation: Input and Output

40

Search System

Individuals

Search system
Aggregator

Requester Provider
Data requesters/
Data providers

Data Task Aggregator

Provide individual tuple

Input dataset

Output data and model



Existing Approach Limitations: Global DP
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Search System

Requester Provider

Global DP mechanisms add noise 
before releasing the output.

Evaluating each combination drains 
privacy budget.

Data Task Aggregator

Exponential combinations of 
join/union-compatible sets.

Global DP 

Census bureau
Aggregator

State government

Individuals
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Local DP mechanisms add noise to 
each customer’s data.

Augmentations too noisy, difficult to 
distinguish useful ones.

Search System

Requester Provider

Local DP 

Data Task Aggregator

Existing Approach Limitations: Local DP

Customers

Apple Server
Aggregator

Analyst
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Search System

Data Task Aggregator

Shuffle DP Shuffler Shuffler

Requester Provider

Shuffle DP mechanisms add noise to 
each customer’s data, then shuffle 
to enhance privacy.

Only enhance privacy levels for large 
datasets.

Existing Approach Limitations: Shuffle DP

Customers

Apple/Google



Sketch-based Approach
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Search System

Data Task Aggregator

Individuals

Search system
Aggregator

Requester Provider
Data requesters/
Data providers

Precompute private sketches

Linear reg. as proxy to assess accuracy
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Sketch-based Search

Linear regression has closed form solution



A sum(Y2) sum(Y) count

a1 12+22 1+2 2

46

Monomial semi-ring

A Y

a1 1

a1 2

D

Sum of 0th, 1st, 2nd-order monomials

Sketch-based Search

How to compute sum of pairwise product between features? 

Compute aggregates 
as sketches
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A Y

a1 1

a1 2

R

A B

a1 1

a1 2

D

Linear regression on D⋈R requires computing  ∑1, ∑B, ∑Y, ∑BY

A Y B

a1 1 1

a1 1 2

a1 2 1

a1 2 2

D ⋈ R

⨝

= 9

Sketch-based Search
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Linear regression on D⋈R requires computing  ∑1, ∑B, ∑Y, ∑BY

A Y B

a1 1 1

a1 1 2

a1 2 1

a1 2 2

D ⋈ R

⨝

Sketch-based Search

A Y

a1 1

a1 2

R

A B

a1 1

a1 2

D

= 9
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Linear regression on D⋈R requires computing  ∑1, ∑B, ∑Y, ∑BY

1st-order

A sum(Y)

a1 1+2

Sketch-based Search

A Y B

a1 1 1

a1 1 2

a1 2 1

a1 2 2

D ⋈ R

⨝
A Y

a1 1

a1 2

R

A B

a1 1

a1 2

D

= 9
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Linear regression on D⋈R requires computing  ∑1, ∑B, ∑Y, ∑BY

1st-order

A sum(B)

a1 1+2

Sketch-based Search

A Y B

a1 1 1

a1 1 2

a1 2 1

a1 2 2

D ⋈ R

⨝
1st-order

A sum(Y)

a1 1+2

= 9

A Y

a1 1

a1 2

R

A B

a1 1

a1 2

D
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Linear regression on D⋈R requires computing  ∑1, ∑B, ∑Y, ∑BY

A sum(B×Y)

a1 3×3

= 9

2nd-order

Sketch-based Search

⊗

1st-order

A sum(B)

a1 1+2

1st-order

A sum(Y)

a1 1+2

A Y

a1 1

a1 2

R

A B

a1 1

a1 2

D
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Linear regression on D⋈R requires computing  ∑1, ∑B, ∑Y, ∑BY

⊗

Sketch-based Search

1st-order

A sum(B)

a1 1+2

1st-order

A sum(Y)

a1 1+2

A Y

a1 1

a1 2

R

A B

a1 1

a1 2

D
A Y B

a1 1 1

a1 1 2

a1 2 1

a1 2 2

D ⋈ R

= 9



Saibot: Our Contribution
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Search System

Data Task Aggregator

Shuffler Shuffler

Individuals

Search system
Aggregator

Requester Provider
Data requesters/
Data providers

Factorized Privacy Mechanism

Saibot Privatize sketches so downstream 
search will be privatized.

Intuition: aggregate datasets as much as possible before adding noise to them.



Saibot: Technical Details

❖ Factorized Privacy Mechanism (FPM).

❖ Noise allocation optimization.

❖ Unbiased estimation.

❖ Proofs

54



Saibot: Technical Details
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❖ Factorized Privacy Mechanism (FPM).

❖ Noise allocation optimization.

❖ Unbiased estimation.

❖ Proofs



Saibot: Assumptions

The schema and join keys for datasets owned by providers are public

❖ Oblivious intersection techniques can be applied.

All tuples are L2 bounded by B (for analysis)

❖ Categorical features numericalized 

56



FPM:Privatize sketches with privacy budget 
(𝜖, 𝛿)
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A sum(Y2) sum(Y) count(Y)

a1 12 1 1

Q: SELECT SUM(Y2), SUM(Y), COUNT(Y) from D GROUP BY A

Use existing DP query engine

QA Y

a1 1

D
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Q: SELECT SUM(Y2), SUM(Y), COUNT(Y) from D GROUP BY A

A Y

a1 1

D

A sum(Y2) sum(Y) count(Y)

a1 22 2 1

A Y

a1 2

D’
Neighbour

Q

FPM:Privatize sketches with privacy budget (𝜖, 𝛿)

Use existing DP query engine

Q A sum(Y2) sum(Y) count(Y)

a1 12 1 1
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Sensitivity of Q: 𝚫(Q) = ǁQ(D) - Q(D’)ǁ
2

FPM:Privatize sketches with privacy budget (𝜖, 𝛿)

Use existing DP query engine

L2 distance

A Y

a1 1

D

A Y

a1 2

D’
Neighbour

Q

Q

A sum(Y2) sum(Y) count(Y)

a1 22 2 1

A sum(Y2) sum(Y) count(Y)

a1 12 1 1
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A sum(Y2) sum(Y) count(Y)

a1 12 1 1

FPM:Privatize sketches with privacy budget (𝜖, 𝛿)

Use existing DP query engine

A Y

a1 1

D

Q

Q: SELECT SUM(Y2), SUM(Y), COUNT(Y) from D GROUP BY A

Budget
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A sum(Y2) sum(Y) count(Y)

a1 12+e1 1+e2 1+e3

FPM:Privatize sketches with privacy budget (𝜖, 𝛿)

Use existing DP query engine

A Y

a1 1

D

Q

e
1
, e

2
, e

3   
ᯈ

Q: SELECT SUM(Y2), SUM(Y), COUNT(Y) from D GROUP BY A
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Naive Solution Limitation:Combining Sketches

A sum(Y2) sum(Y) count(Y)

a1 12+e1 1+e2 1+e3

A sum(C2) sum(C) count(C)

a1 22+e’1 2+e’2 1+e’3

A sum(C2) sum(Y2) sum(C×Y) sum(C) sum(Y) count

a1 (22+e’1)(1+e3) (1+e’3)(1
2+e1) (2+e’2)(1+e2) (2+e’2)(1+e3) (1+e’3)(1+e2) (1+e’3)(1+e3)
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Naive Solution Limitation:Combining Sketches

A sum(Y2) sum(Y) count(Y)

a1 12+e1 1+e2 1+e3

A sum(C2) sum(C) count(C)

a1 22+e’1 2+e’2 1+e’3

A sum(C2) sum(Y2) sum(C×Y) sum(C) sum(Y) count

a1 (22+e’1)(1+e3) (1+e’3)(1
2+e1) (2+e’2)(1+e2) (2+e’2)(1+e3) (1+e’3)(1+e2) (1+e’3)(1+e3)
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Naive Solution Limitation:Combining Sketches

A sum(Y2) sum(Y) count(Y)

a1 12+e1 1+e2 1+e3

A sum(C2) sum(C) count(C)

a1 22+e’1 2+e’2 1+e’3

A sum(C2) sum(Y2) sum(C×Y) sum(C) sum(Y) count

a1 (22+e’1)(1+e3) (1+e’3)(1
2+e1) (2+e’2)(1+e2) (2+e’2)(1+e3) (1+e’3)(1+e2) (1+e’3)(1+e3)
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Naive Solution Limitation:Combining Sketches

A sum(Y2) sum(Y) count(Y)

a1 12+e1 1+e2 1+e3

A sum(C2) sum(C) count(C)

a1 22+e’1 2+e’2 1+e’3

A sum(C2) sum(Y2) sum(C×Y) sum(C) sum(Y) count

a1 (22+e’1)(1+e3) (1+e’3)(1
2+e1) (2+e’2)(1+e2) (2+e’2)(1+e3) (1+e’3)(1+e2) (1+e’3)(1+e3)
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Noise Allocation

How to draw noise from different distributions to aggregations?

count(Y)

1+e3

sum(Y)

1+e2

sum(Y2)

12+e1
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Noise Allocation

How to draw noise from different distributions to aggregations?

Sensitivity
O(B2)

Sensitivity
O(B)

Sensitivity
O(1)

count(Y)

1+e3

sum(Y)

1+e2

sum(Y2)

12+e1
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Noise Allocation

How to draw noise from different distributions to aggregations?

count(Y)

1+e3

sum(Y)

1+e2

sum(Y2)

12+e1

e

1

e

2

e

3
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Noise Allocation

How to draw noise from different distributions to aggregations?

e

1

e

2

e

3
𝜖/3 𝜖/3 𝜖/3 

count(Y)

1+e3

sum(Y)

1+e2

sum(Y2)

12+e1
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Noise Allocation: Analysis

Bounding linear regression estimator:



71

Noise Allocation: Analysis

Bounding linear regression estimator:

Naive Method:
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Noise Allocation: Analysis

Bounding linear regression estimator:

Naive Method:

Optimization:
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Reduce the bound on linear regression parameter by O(B2)

Noise Allocation: Analysis

Bounding linear regression estimator:

Naive Method:

Optimization:



Prior Mechanisms Don’t Scale

To repository size & number of requests
Vary between 10 - 329 NYC Open Datasets in Repo

74

Repository size

No privacy

LDP
Shuffle
GDP 

Final Model 
Accuracy



Prior Mechanisms Don’t Scale

To repository size & number of requests
Vary between 10 - 329 NYC Open Datasets in Repo

75

Final Model 
Accuracy

Repository size

No privacy

LDP
Shuffle
GDP 

Mileena


