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Overview of Data Markets



A platform where data is bought, sold or exchanged (much like a traditional 
marketplace)

Seller Buyer

Platform

Data
Query

Data/Insights/ML modelMoney/Credits

What is a data market?



Many types of data markets



● Keyword search over repositories
● Clean rooms
● Data labeling market
● Synthetic data market
● Curated alternative data

Many types of data market



Keyword search over a table repository 
● Index metadata or embeddings
● Return tables or links to tables
● Typically no money exchange

OpenData (data.gov), Academic (ICPSR, Dryad)
● Returns tables

Huggingface 
● Returns models or training data

Google, Snowflake Marketplace, …
● Returns links

Keyword/NL Search

http://data.gov


Enterprise Data Clean Rooms
Secure, privacy-preserving joins between orgs
● SQL aggregation over shared schemas
● Supports collaborative analytics (advertiser + publisher)

Example: Snowflake Clean Room
● Walmart w/ loyalty program & in-store purchases
● Discover w/ transaction & demographic data
● Can’t share raw customer data (PII)
● Join anonymized keys mediated by clean room
● Compute sales lift, cross-channel attribution

Others: AWS Cleanroom, BigQuery, InfoSum, Data Escrow



Data Labeling Markets
Acquire labels for training models
● User provides task, data, instructions, and goal schema
● Workers complete tasks, checked with reviewers/algorithms
● Pay for high quality labels 

Examples: Scale AI, Sama, Surge AI
● Waymo has millions of raw LiDAR frames
● Wants 3D bounding boxes, semantic segmentation
● Submits task definitions and raw data to Scale AI platform
● Labelers + AI-assisted workflows produce structured annotations
● Outputs used to train NN models



Synthetic Data Markets
Simulate real data without exposing real records
● User uploads data
● Train on secure platform
● Return synthetic data/model
● Used for testing, demos, edge cases, sharing

Examples: Gretel.ai, MostlyAI
● LendingClub has loan applications (income, SSN, credit)
● Can’t share or use raw data for model testing due to compliance
● Uploads sample data to generate synthetic dataset
● Uses output to train and validate credit risk models internally



Curates data about sectors, companies, metrics, tickers, …
● Sources from web & vendors
● Reduce noise, integrate, clean, enforce schema, align w/ business concepts
● Sells datasets, subscriptions to data feeds, or faceted/keyword access

Example: Thinknum
● Crawls web: hiring pages, app store rankings, product pricing, retail inventory 
● Differences data day-to-day
● Sells cleaned data feeds of changes e.g., Walmart + sales job postings

Others: Acxiom, Nielsen, Bloomberg, Morningstar, YipitData
https://oag.ca.gov/data-brokers

Data Brokers



Category Example Query Discovery Incentive Output

Clean Rooms AWS Clean Rooms SQL Invite/catalog Mutual value Aggregated results

Labeling Markets ScaleAI Task API Payment Labeled data

Alternative Data Thinknum Topic Catalog/team Subscription Curated tables

Open Data Portals NYC Open Data Keyword Tags/Portal Public value CSVs / APIs

Dataset Search Google Dataset Search NL (Keyword) Metadata indexing Visibility External links

Model-as-Data Hugging Face Datasets Task Benchmarks/Tags Citation Task-ready datasets

Academic Data ICPSR Structured Metadata schema Citation Research tables

Synthetic Data Gretel.ai Schema API Privacy Synthetic tabular data

http://gretel.ai


Data Market platform

Seller
Data 

Registration

Shares their data

What information should seller 
provide to register the dataset?

Key Components of a Data Market



Data Market platform

Seller
Data 

Registration

Shares their data
Data 

Ingestion 
and Indexing

How to store available datasets to 
support efficient search?

Key Components of a Data Market



Seller
Data 

Registration

Shares their data
Data 

Ingestion 
and Indexing

Data 
Discovery

Buyer

Query

How to process user query to 
efficiently identify relevant 
datasets?

Key Components of a Data Market



Seller
Data 

Registration

Shares their data
Data 

Ingestion 
and Indexing

Data 
Discovery

Buyer

Query

Data 
Valuation

What price should the buyer pay 
for the discovered datasets?

Key Components of a Data Market



Seller
Data 

Registration

Shares their data
Data 

Ingestion 
and Indexing

Data 
Discovery

Buyer

Query

Data 
Valuation

Payment 
allocation

How to allocate the money paid by 
buyer among different sellers?

Key Components of a Data Market



Seller
Data 

Registration

Shares their data
Data 

Ingestion 
and Indexing

Data 
Discovery

Buyer

Query

Data 
Valuation

Payment 
allocation

Economics of data sharing

Key Components of a Data Market



Seller
Data 

Registration
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Data 
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Buyer
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Data 
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Data 
Sharing

How to share data with the buyer?

Key Components of a Data Market
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Ingestion 
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Buyer
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Data 
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Payment 
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Data 
Sharing

How to share data with the buyer?

Key Components of a Data Market



Seller
Data 

Registration

Shares their data

Data Ingestion  
& Indexing

Data 
Discovery

Buyer

Query

Data 
Valuation

Payment 
allocation

Data Sharing

Search

Transfer

Economics

Key Components of a Data Market



● Data Registration and Discovery:
○ What information should a seller provide?
○ How to store these datasets?
○ How to efficiently discover datasets for a buyer?

● Data Sharing (or acquisition)
○ Arrows information paradox
○ What does the seller get? How is the final dataset shared?

● Data valuation:
○ How to price datasets?

● Payment allocation
○ How to allocate the money paid by the buyers amongst the sellers

Systems 
challenge
(This Tutorial)

Economics 
challenge

Summary: Challenges of a data market



● Data Registration and Discovery:
○ What information should a seller provide?
○ How to store these datasets?
○ How to efficiently discover datasets for a buyer?

● Data Sharing (or acquisition)
○ Arrows information paradox
○ What does the seller get? How is the final dataset shared?

● Data valuation:
○ How to price datasets?

● Payment allocation
○ How to allocate the money paid by the buyers amongst the sellers

Systems 
challenge

Economics 
challenge

How to ensure security and privacy?
● Protect buyers from malicious sellers
● Protect sellers from malicious buyers
● Prevent unauthorized users from accessing:

○ Seller private data
○ Buyer private data
○ Platform private data

● Prevent manipulation of data acquisition mechanisms:
○ Data discovery
○ Data valuation
○ Data negotiation
○ Data delivery

Focus of this tutorial



How to control what buyers 
can acquire?



● A software system that controls dataflows
○ Sellers send their data; buyers send their tasks
○ Escrow runs buyers’ tasks on seller’s data 

24

Data Escrow
1

2

4 3

Data (D)

Policy

Task (F)

Signal

Slides borrowed from Raul Castro Fernandez, an author of this paper

Data Escrow [VLDB’22]



● A software system that controls dataflows
○ Sellers send their data; buyers send their tasks
○ Escrow runs buyers’ tasks on seller’s data 

25

Data Escrow
1

2

4 3

Data (D)

Policy

Task (F)

Signal

• Guarantee: no data* leaves the escrow without explicit 
permission, i.e., without an explicit policy

Data Escrow [VLDB’22]



Data Markets

26

Seller Buyer

Data
Task With my data,

Accuracy: 0.63

Using the Escrow to Signal Dataflow 
results
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With my data,
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With market data,
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Data Markets

29

Seller Buyer

Data
Task

With my data,
Accuracy: 0.63

With market data,
Accuracy: 0.94

Market (escrow) 
signals the accuracy is 

0.94. Buyer learns 
(0.94-0.63) is the 
benefit of buying

Using the Escrow to Signal Dataflow 
results



How do we delegate tasks, create 
signals, 
i.e., how do we control dataflows?

30



31

Data Escrow
1

3

4 2

Data

Policy

Task

Signal

Programmable Dataflows



● Escrow Programming Framework (EPF)

32

Data Escrow
1

3

4 2

Data

PolicySignal

Programmable Dataflows

Task



● Escrow Programming Framework (EPF)
1. Developers write programs

33

Data Escrow
1

3

4 2

Data

PolicySignal

def compare_schemas():
       …
def combine_tables():
       …
def automl_model():
       …
def test_accuracy(valset):
       …

0

Task

Programmable Dataflows



● Escrow Programming Framework (EPF)
1. Developers write programs
2. Deploy on escrow

34

Data Escrow
1

3

4 2

Data

PolicySignal

Task

Programmable Dataflows
def compare_schemas():
       …
def combine_tables():
       …
def automl_model():
       …
def test_accuracy(valset):
       …

0



● Escrow Programming Framework (EPF)
1. Developers write programs
2. Deploy on escrow
3. Agents join and call functions

35
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● Escrow Programming Framework (EPF)
1. Developers write programs
2. Deploy on escrow
3. Agents join and call functions

● Program implements communication and logic via contracts

36

Data Escrow
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3

4 2

Data
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def combine_tables():
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       …
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● Escrow Programming Framework (EPF)
1. Developers write programs
2. Deploy on escrow
3. Agents join and call functions

● Program implements communication and logic via contracts

37

Data Escrow
1

3

4 2

Data

PolicySignal

Programs 
implement

data environments

Task

def compare_schemas():
       …
def combine_tables():
       …
def automl_model():
       …
def test_accuracy(valset):
       …

0

Programmable Dataflows



● What happens in the escrow, stays in the escrow
○ Except when it needs to be available to auditors and 3-party officers

● Data is encrypted end-to-end
○ At rest and during computation

■ Use of secure hardware enclaves
○ Encrypted Write-Ahead Log (EWAL)
○ Cryptographic protocols for IO

■ Key exchange and recovery after 
failures…

38

Delegated, Auditable, Trustworthy



Data Search



Unlimited Storage → Massive Data Repos

40

Gov Portals
Data Markets
Data Lakes
Web Tables
Data coalitions
…



What Can We Do with 1M+ Tables?

Gov Portals
Data Markets
Data Lakes
Web Tables
Data coalitions
…

41

Scientific phenomena
Economic theories
Investment hypotheses
Customer analysis
…

?

Step 1: Find Relevant Tabular Dataset



Data Market/Data Discovery

Centralized Data Search Systems

Data DataData

A single system stores & manages the datasets

Pros:
● Fits an organization’s data lake
● Easier access to raw data, experts, metadata
● Easier to tightly integrate with use cases

Cons
● Limited to a single organization



Provider 1

Data Market/Data Discovery

Decentralized Data Search Systems

Data

Data is federated, and system has access to 
statistics rather than raw data

Pros
● Clear separation of privacy concerns
● More realistic for a public data market

Cons
● More difficult to provide utility
● Hard to manage multiple providers

Provider 2

Data

Provider N

Data

Stats Stats Stats



Data Market/Data Discovery

Challenges in Data Search Systems

Data DataData

Query interface
Latency, Scalability
Privacy protection

Stats Stats Stats

Query interface
Latency, Scalability
Privacy protection

Query specification
Privacy protection

Data acquisition
Data preparation
Privacy protection



3 Classes of Systems

Keyword/Metadata Search

Data Discovery

Task-based Search



Keyword Search 



Keyword Search as Sensemaking

DataScout.  Rachel Lin, Bhavya C., Wenjing L., Shreya S., Madelon H., Aditya P.
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Keyword Search as Sensemaking

DataScout.  Rachel Lin, Bhavya C., Wenjing L., Shreya S., Madelon H., Aditya P.



Keyword Search

Pros
● Fast, doesn’t need access to actual data
● Filters and ranks datasets
● Dominant data search approach today

Cons
● Users need to evaluate datasets against actual data task
● Users in the critical path of search

50



Data Discovery
Search by using a table or distribution as the query
Ling13,Zhu16,Nargesian18,Fernandez19,Rezig22,Santos21,Fan23,...

Rank based on 
● Similarity, 
● Joinability, 
● Correlations, 
● Unionability, 
● Predicate satisfiability,
● …



Starmie: Table Union Search [Fan23]

Data lake

Embedding 
Index

Extract

Cosine Similarity

Candidates

Embeddings

Rerank

Query



Distribution-based Data Discovery [Behme24]



Data Discovery

Pros
● Results specific to the query table
● Scalable, leverages table representations

Cons
● Unless query is a retrieval task, users still need to evaluate 

datasets against actual data task
● Users in the critical path of search



Data Task as Search Query

55

Task T(D)→goodness is function of table D

Prediction ARDA, AUCTUS, Galhotra23

● T(D): train predictive model
● Given training dataset D, find augmentations that improve T(D)

Causal Inference Suna Liu25, MetaM Galhotra23

● T(D): estimate Average Treatment Effect
● Given D with treatment and outcome, find likely confounders



Data Task as Search Query

56

Pros
● Ranks directly based on user’s task
● Can incorporate cleaning, integration, transformation

Potential Cons
● Evaluating task can be slow
● Hard to quantify task quality



Two Examples of Task-Based Search

Based on 
Kitana: A Data-as-a-Service Platform.  Zach Huang23

The Fast and the Private: Task-based Dataset Search.  Huang24
Saibot: A Differentially Private Data Search Platform.  Huang23

Suna: Scalable Causal Confounder Discovery over Relational Data.  Liu25



Data Task as Search Query

58

Data Providers
(offline)

Local 
Computation

Causal Inference:
“How much does studying 
cause higher scores?”

Confounders, ATE estimates

Requester
(online)

Prediction:
“Predict test scores”

Better Model M,
Augmentations:
“D101.zip, D9.difficulty”

Cloud-based 
Search Engine

Search Indexes



Prediction Task

1 45

 

1 2 3 4 5Dataset
Repository

D

 

   



Basic Search Algorithm
D = initial training dataset

for A in all candidate augmentation plans

eval(apply A to D)

return best A
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Basic Search Algorithm
D = initial training dataset

for A in all candidate augmentation plans

eval(apply A to D)

return best A



D = initial training dataset

for A in all candidate augmentation plans

eval(apply A to D)

return best A

Combinatorial

Slow!

Reduce Search Space
• ARDA: join all relations + feature selection
• MetaM: cluster datasets and iteratively prune

Accelerate Eval()
• Auctus: find joinable correlations

Relies on access to raw data

Expensive!
Materialize A(D)
Retrain & Cross-validate



D = initial training dataset

for next augmentation 𝛂
if eval(apply A to D) is best so far

Keep 𝛼 in A
return best A

Greedy Search

Example System: Kitana

Expensive!
Materialize A(D)
Retrain & Cross-validate

Ideas

● Greedily find single best augmentation in each iteration
● Use sketches to accelerate & parallelize eval()



Naïve join generates big intermediate relation
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Optimization: drop irrelevant columns
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Optimization: sufficient statistics
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Sketches



Optimization: sufficient statistics
Sketches defined for common stats, ML models.
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Optimization: sufficient statistics
Sketches defined for common stats, ML models.
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Optimization: sufficient statistics
Sketches defined for common stats, ML models.
Linear Regression as a proxy model during search

70

D S

 

SketchD SketchS

 

train & eval model



Evaluation on 8376 Kaggle Tables
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Evaluation on 8376 Kaggle Tables
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Evaluation on 8376 Kaggle Tables
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DataEx GPU

Similarity

ALITE
A

dj
us

te
d 

R
2

VertexAI

DataEx 
CPU

Runtime (sec, log)

AutoSklearn



Local Pre-processing 

Cloud Dataset Search Engine

DataEx

74

Data 
Providers
(offline)

Requesters
(online)

Prediction task

Augmentations, models
GPU-based 

Search
Centralized Storage & 

Data Discovery

upload query

Build Discovery Indexes 
& Sketches



Local Pre-processing 

Cloud Dataset Search Engine

DataEx
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Data 
Providers
(offline)

Requesters
(online)

Prediction task

Augmentations, models
GPU-based 

Search
Centralized Storage & 

Data Discovery

upload query

Build Discovery Indexes 
& Sketches Causal Inf task

Confounders, ATE



Local Pre-processing 

Cloud Dataset Search Engine

76

Data 
Providers
(offline)

Requester
s

(online)

Prediction task

Augmentations, models
GPU-based 

Search

Causal Inf task

Confounders, ATECentralized Storage & 
Data Discovery

upload query

Factorized 
Differential Privacy

Build Discovery Indexes 
& Sketches

Agent-based 
Data Preparation



Confounders in Causal Analysis

77
https://math.stackexchange.com/questions/83756/more-examples-of-simpsons-paradox-barring-the-ones-on-wikipedia-titanic-and

negative 

correlation

Studying causes poor grades?
Study → TestScores

Study Test score

Treatment Outcome

Causal Diagram

Hours of Study

Te
st

 S
co

re



Confounders in Causal Analysis

78
https://math.stackexchange.com/questions/83756/more-examples-of-simpsons-paradox-barring-the-ones-on-wikipedia-titanic-and

Why does the trend reverse?Studying causes poor grades?
Study → TestScores

Study Test score

Treatment Outcome

Difficulty

ConfounderSimpson’s 
Paradox

Causal Diagram

Hours of Study

Te
st

 S
co

re

Reversed



Confounders in Causal Analysis

Study Test score

Treatment Outcome

1 15 hr 75
2 10 hr 90
3 20 hr 85

ID ScoreStudy

…

Difficulty

Course Level

Year Age

District

DistrictID

1 1

3 3
2 2

ID Course Difficulty

1 CS101 3
2 CS102 1
3 CS103 4

User Query

Treatment Outcome

Data Repository



Confounders in Causal Analysis

Study Test score

Treatment Outcome

Difficulty

1 15 hr 75
2 10 hr 90
3 20 hr 85

ID ScoreStudy

Course Level

Year Age

District

User Query

Treatment Outcome

…

DistrictID

1 1

3 3
2 2

ID Course Difficulty

1 CS101 3
2 CS102 1
3 CS103 4

Data Repository



Confounders in Causal Analysis

Study Test score

Treatment Outcome

Difficulty

Course Level

Year Age

District

?

Background: Bivariate Causal Discovery
(BCD) estimates → or ← edges from data
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Confounders in Causal Analysis
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Course Level

Year Age

District
Background: Bivariate Causal Discovery
(BCD) estimates → or ← edges from data



Confounders in Causal Analysis

Study Test score

Treatment Outcome

Difficulty

Course Level

Year Age

District
Background: Bivariate Causal Discovery
(BCD) estimates → or ← edges from data

Proof: existence of confounder reduces to BCD 
estimating “Ancestors ↝ Treatment”



Discovering Confounders with BCD

Building adjustment set for Study → TestScore

Study Test score

Difficulty

Level

Key Observation:
treatment and outcome confounded: BCD will flag confounder → treatment.

85



Discovering Confounders with BCD

Building adjustment set for Study → TestScore

Study Test score

Difficulty

Level

Difficulty is a confounder, not flagged by BCD because confounded by Level
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Difficulty is a confounder, not flagged by BCD because confounded by Level

Discovering Confounders with BCD

Building adjustment set for Study → TestScore

Study Test score

Difficulty

Level

Construct a new path for non-causal effect

87



Discovering Confounders with BCD

Building adjustment set for Study → TestScore

Study Test score

Difficulty

Level

Level is also a confounder, flagged by BCDKey Insight:
Level < Difficulty topologically – we prove a confounder always flagged by BCD

88



Discovering Confounders with BCD

Theorem 1: If ∃ confounder between treatment and outcome, ∃ attribute A s.t
● A → treatment and ∄ confounder between A and treatment.
● A is a confounder between treatment and outcome.

Flagged by BCD

Selected heuristically

Building adjustment set for Study → TestScore

Study Test score

Difficulty

Level

89



Confounders in Causal Analysis

Study Test score

Treatment Outcome

Difficulty

Course Level

Year Age

District
Background: Bivariate Causal Discovery
(BCD) estimates → or ← edges from data

Proof: existence of confounder reduces to BCD 
estimating “Ancestors ↝ Treatment”

Algorithm: Use BCD to find superset of Ancestors and 
iteratively reduce until it is an admissible set.

System: develop novel sketches to accelerate BCD 
evaluation, scale using GPUs 

● Level= 𝛽
1
ᐧStudy + 𝜖

1

● Estimate: MI(Study, Level-𝛽
1
ᐧStudy)

● Push mutual information through joins



S
ec

s

# Attrs

DataEx

91

Experimental Results
Real Data: Reproduces Known Confounders Synthetic Data: Accurate & Fast

 

Suna

HypDB
MESA



Summary of Task-based Search

Task-evaluation is bottleneck
● Identify hardware and parallelization-friendly sketches to 

accelerate task evaluation

Need algorithms to avoid combinatorial search

Arbitrary tasks can be supported, but are very difficult…



Metam: Task-agnostic search [Galhotra23]



 

        
  
  

Initial 
dataset D Prediction

Algorithm

Prediction
Algorithm

S

Problem Setup



Prediction
Algorithm

     0.87 
  
  

Prediction
Algorithm

    
0.67

Exhaustive Search: Sequentially calculate utility of every subset of the 
data and pick the best subset

95

⚠ Requires nk  queries! Infeasible when n is in the order 
of millions

Can we prioritize subsets?

How to solve the problem?
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Similar datasets have similar utility!

Clustering helps to diversify the search 
process
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Id Address . . . . Zip Code Crime
1 153 JFK, NY 12543 Low

2 543 Albert 
Street, NY

? ?

3 432 MK road 14656 High

4 5432 Dud Dr 54637 Low

5 6732 Psycho 
Path

? ?

6 23 Main Street ? ?

Properties of the newly added attribute

Fraction of missing values: 0.4

Correlation (Crime, Area): 0.65

Using Data Properties As Features To Cluster



Cluster attributes by 
generating data 
properties to represent 
attributes

Goal: Minimize the 
distance between 
intra-cluster attributes

Which clusters should we choose?

98

IDEAL SCENARIO: Probability of sampling an informative attribute from 
the cluster C

EXPLORE-EXPLOIT DILEMMA: 
Should I sample more datasets from cluster Ci?

OR
Should I explore different clusters?

SOLUTION: Bandit-based approach

Approach 1: Diversify the Search Process



Construct subsets from 
different clusters

0Number of queries:

C1 C2 C3 C4

0.25 0.25 0.25 0.25

Prediction
Algorithm

    
0.67

99

Approach 1: Diversify the Search Process



Construct subsets from 
different clusters

1Number of queries:

C1 C2 C3 C4

0.13 0.29 0.29 0.29

Prediction
Algorithm

     0.87 
  
  

10
0

Approach 1: Diversify the Search Process



Construct subsets from 
different clusters

Number of queries:

C1 C2 C3 C4

0.02 0.84 0.10 0.04

100

Converged scores

10
1

Approach 1: Diversify the Search Process



Complexity
O(|C|k)

Leverages 
data 

profiles to 
search 

efficiently
10
2

Approach 1: Diversify the Search Process

Bandit-bas
ed 
approach

Prediction 
Algorithm



 

Solution: Greedily choose the best augmentation

10
3

Approach 2: Leverage Monotonicity of Utility 
Metric



Can fail if 
utility is super 

modular 
(unlikely but 

possible)

Highly efficient 
to identify 

useful 
augmentations

10
4

Approach 2: Leverage Monotonicity of Utility 
Metric

Greedy
Approach

Prediction 
Algorithm



Run both 
techniques in 

parallel, i.e. ask 
queries 

alternatively

10
5

Final Approach: Combining All Ideas

Greedy
Approach

Prediction 
Algorithm

Bandit-bas
ed 
approach



Data Market/Data Discovery

Privacy Challenges Are Everywhere!

Data DataData

Query interface
Latency, Scalability
Privacy risks

Query specification
Privacy risks

Data acquisition
Data preparation
Privacy risks

Stats Stats Stats



Part 2: Privacy and Security Risks

https://dacesresearch.org/tutorials/sigmod2025/ 

https://dacesresearch.org/tutorials/sigmod2025/


Protect Information in Data Markets



Protect Information in Data Markets
1. Protect buyers from malicious sellers
2. Protect sellers from malicious buyers
3. Prevent unauthorized users from accessing:

a. Seller private data
b. Buyer private data
c. Platform private data

4. Prevent manipulation of data acquisition mechanisms:
a. Data discovery
b. Data valuation
c. Data negotiation
d. Data delivery



Privacy and Security Attacks
● Naively allowing query access to data markets is risky for users/orgs

○ Linkage attacks
○ Reconstruction attacks
○ Inference attacks
○ Plaintext/ciphertext attacks

● Naive designs of data markets is risky for valuation
○ Manipulation of pricing and negotiation mechanisms
○ Less trust in data markets

Motivates the need for robust privacy and security protections



Privacy and Security Attacks
● Naively allowing query access to data markets is risky for users/orgs

○ Linkage attacks
○ Reconstruction attacks
○ Inference attacks
○ Plaintext/ciphertext attacks

● Naive designs of data markets is risky for valuation
○ Manipulation of pricing and negotiation mechanisms
○ Less trust in data markets

Motivates the need for robust privacy and security protections



Linkage Attacks
Perform join on one or more datasets
Can uniquely identify individuals

      Part 2 of attributesPart 1 of attributes  shared



De-identification attempt
“Anonymize the Data”: Are we happy with this solution? Why or why not?

Name Sex Blood … HIV?

James M B … N

Peter M O … Y

… … … … …

Paul M A … N

Eve F B … Y

Name Sex Blood … HIV?

XXXXX M B … N

XXXXX M O … Y

… … … … …

XXXXX M A … N

XXXXX F B … Y



De-identification attempt
“Anonymize the Data”: Not sufficient because of linkage attacks!

87% of US population (used to) have unique date of birth, gender, and postal code! 

[Golle and Partridge ‘09]



De-identification attempt
“Anonymize the Data”: Reidentification via Linkage
Can uniquely identify > 60% of the U.S. population [Sweeney ’00, Golle ‘06, Sweeney ‘97]

Name Sex Blood … HIV?

XXXXX M B … N

XXXXX M O … Y

… … … … …

XXXXX M A … N

XXXXX F B … Y

Ethnicity
Visit date
Diagnosis
Procedure
Medication
Total charge

Name
Address
Date registered
Party affiliation
Date last voted

ZIP
Birth date
Sex

Medical Data                                         Voter List



Privacy and Security Attacks
● Naively allowing query access to data markets is risky for users/orgs

○ Linkage attacks
○ Reconstruction attacks
○ Inference attacks
○ Plaintext/ciphertext attacks

● Naive designs of data markets is risky for valuation
○ Manipulation of pricing and negotiation mechanisms
○ Less trust in data markets

Motivates the need for robust privacy and security protections



Reconstruction Attack



Reconstruction Attack



Privacy and Security Attacks
● Naively allowing query access to data markets is risky for users/orgs

○ Linkage attacks
○ Reconstruction attacks
○ Inference attacks
○ Plaintext/ciphertext attacks

● Naive designs of data markets is risky for valuation
○ Manipulation of pricing and negotiation mechanisms
○ Less trust in data markets

Motivates the need for robust privacy and security protections



Inference Attacks



Inference Attacks



Privacy and Security Attacks
● Naively allowing query access to data markets is risky for users/orgs

○ Linkage attacks
○ Reconstruction attacks
○ Inference attacks
○ Plaintext/ciphertext attacks

● Naive designs of data markets is risky for valuation
○ Manipulation of pricing and negotiation mechanisms
○ Less trust in data markets

Motivates the need for robust privacy and security protections



Plaintext/Ciphertext Attacks
A datamarket could encrypt the interaction between buyers/sellers/platforms



Plaintext/Ciphertext Attacks
A datamarket could encrypt the interaction between buyers/sellers/platforms. The 
encryption scheme should be secure against one or more threat models:

Ciphertext-only attack

Known-plaintext attack

Chosen-plaintext attack

Chosen-ciphertext attack



Privacy and Security Attacks
● Naively allowing query access to data markets is risky for users/orgs

○ Linkage attacks
○ Reconstruction attacks
○ Inference attacks
○ Plaintext/ciphertext attacks

● Naive designs of data markets is risky for valuation
○ Manipulation of pricing and negotiation mechanisms
○ Less trust in data markets

Motivates the need for robust privacy and security protections



Valuation Attacks



Valuation Attacks
MemAttack: Efficiently Attacking Memorization Scores

by Do, Chandrasekaran, Alabi (2025)

Influence estimation tools—such as memorization scores—are widely used to understand model behavior, attribute training data, and inform dataset curation. However, recent 
applications in data valuation and responsible machine learning raise the question:

Can these scores themselves be adversarially manipulated? 
In this work, we present a systematic study of the feasibility of attacking memorization-based influence estimators. We propose efficient mechanisms that allow an adversary to 
perturb specific training samples or small subsets of data to inflate or suppress their corresponding influence scores, all while maintaining high utility on natural downstream 
tasks. Our attacks are practical, requiring only black-box access to model outputs and incur moderate computational overhead. We empirically validate our methods on MNIST, 
SVHN, and CIFAR-10, showing that even state-of-the-art estimators are vulnerable to targeted score manipulations. In addition, we provide a theoretical analysis of the stability 
of memorization scores under adversarial perturbations, revealing conditions under which influence estimates are inherently fragile. Our findings highlight critical vulnerabilities in 
influence-based attribution and suggest the need for robust defenses.



Valuation Attacks
In large datasets, a small subset of highly influential (memorized) training 
examples disproportionately affects the model’s predictions and generalization 
capabilities, while the majority of examples have little to no impact. Influence 
scores quantify how much each datapoint affects the model’s predictions.

Influence scores can be used to price data.
● Tom Yan and Ariel D Procaccia. If you like shapley then you’ll love the core. AAAI 2021
● Tianshu Song, Yongxin Tong, and Shuyue Wei. Profit allocation for federated learning. In 2019 IEEE International Conference on Big Data (Big 

Data), pages 2577–2586. IEEE, 2019.
● Jiachen T Wang and Ruoxi Jia. Data banzhaf: A robust data valuation framework for machine learning. AISTATS 2023.
● Tianhao Wang, Johannes Rausch, Ce Zhang, Ruoxi Jia, and Dawn Song. A principled approach to data valuation for federated learning. 

Federated Learning: Privacy and Incentive, pages 153–167, 2020.



Valuation Attacks
Memorization Score

Quantifies how much a new example would change the

performance of a classifier.



Valuation Attacks via Memorization Scores
1) Out-of-Distribution (OOD) Replacement Attack.
2) Pseudoinverse Attack (PINV)
3) EMD Attack: Maximize Wasserstein distance between original and perturbed 

data points
4) DeepFool (DF) Perturbation Attack: Sample points along decision boundary



Valuation Attacks: Experimental Results
{Loss Curvature, Confidence Event, and Privacy Score} are proxies for the memorization scores.

We evaluate on MNIST, SVHN, CIFAR-10 datasets.

Higher scores correspond to more memorization from the attack data points.



Valuation Attacks: Experimental Results
{Loss Curvature, Confidence Event, and Privacy Score} are proxies for the memorization scores.

We evaluate on (standard) deep neural network architectures: VGG, ResNet, MobileNet.

Higher scores correspond to more memorization from the attack data points.



Conclusion: Privacy and Security Attacks
● Naively allowing query access to data markets is risky for users/orgs

○ Reconstruction attacks
○ Inference attacks
○ Plaintext/ciphertext attacks

● Naive designs of data markets leads is risky for valuation
○ Manipulation of pricing and negotiation mechanisms
○ Less trust in data markets

Need to provide robust privacy and security protections



Conclusion: Privacy and Security Attacks
Need to provide robust privacy and security protections via security definitions:

1. Security guarantee: what is the scheme/protocol in the data market intended 
to prevent the attacker from doing?

2. Threat model: what is the power of the adversary in the data market? What 
actions can the attacker perform?



Protect Information in Data Markets
1. Protect buyers from malicious sellers
2. Protect sellers from malicious buyers
3. Prevent unauthorized users from accessing:

a. Seller private data
b. Buyer private data
c. Platform private data

4. Prevent manipulation of data acquisition mechanisms:
a. Data discovery
b. Data valuation
c. Data negotiation
d. Data delivery

Next: How do we protect the information?



Part 3: 
Privacy-Preserving 

Technologies and Security 
Tools



The Spectrum of Data Marketplace Architectures
Governance/Storage Categories Centralized Data Storage (Data is 

Pooled)
Distributed Data Storage (Data 
Stays Sovereign)

Centralized Governance (Single, 
Trusted Arbiter)

The Traditional Hub
● Classic data warehouse 

model 
● High trust in one operator 

required

The Federated Orchestrator 
● Data is federated, not 

pooled
● A central company still 

manages rules & accesses

Decentralized Governance 
(Automated, "Smart" Arbiter)

The Governed Pool
● Data is pooled, but 

governed by 
code/community

● A niche but emerging 
approach

 The Sovereign Exchange 
● Data Sovereignty by Design
● Transaction Integrity via 

Arbiter



Trading Insights via Gradients in Distributed Marketplace

The Core Idea:

Instead of trading the data itself, participants trade the "insight" the data provides to a 
machine learning model.

How is this insight captured?

Through a Gradient.

The Implication for Valuation:

In this model, the transaction and valuation are no longer about the raw data. They are 
now fundamentally tied to the quality and utility of the gradient itself.



How a Gradient Marketplace Works
● A Buyer wants to train or 

improve their ML model.
● Multiple Sellers use their 

private data to compute 
gradients for the buyer's 
model.

● The Buyer purchases these 
gradients and uses them to 
update their model.



The Problem – A Wall Between Buyers and Data

THE DATA BUYER

Needs to accurately 
assess data quality 
and value before 
committing 
resources.

KEY BARRIERS

🛡 Privacy & Security: Prevents the 
exposure of sensitive user data and 
Personally Identifiable Information.

🔒 Data Ownership & IP: Protects the 
data as the seller's core asset and valuable 
intellectual property.

☁ Scale & Efficiency: Makes the full 
transfer and inspection of massive datasets 
logistically impractical.

 

THE RAW DATASET

The source of truth 
remains unseen, its 
quality unverified.



The Flawed Solution: Valuing by a (Gameable) Proxy

The Theory: A Proxy Is an Honest Signal of Quality

The Reality: A Proxy Can Be Manipulated

The Central Vulnerability:

A proxy can be manipulated independently of the data's actual quality. This makes the 
entire valuation process gameable.



Valuation in Distributed Setups

Frameworks like DAVED* solve this by performing valuation on embeddings (i.e., 
"fingerprints") instead of raw data.

The Goal: This allows for good data selection in a distributed setup, preserving 
privacy while assessing quality.

*Lu et al., "DAVED: Data Acquisition via Experimental Design for Data Markets," NeurIPS 2024.



How to Fool an Embedding-Based Valuation
● A buyer wants data with embeddings similar to a Target Image.
● The seller adds calculated, imperceptible noise to their own Irrelevant 

Image.
● The new "noisy" image now has an embedding nearly identical to the Target 

Image.
● The Result: The valuation is fooled. The buyer's system approves the 

purchase, but they receive a dataset of useless, manipulated images.



The Vulnerability: Embeddings Can Be Manipulated

Context: A buyer is searching a dermatology dataset (like Fitzpatrick17K) for high-value images of a 
specific skin condition to train their ML model.

● Original: A irrelevant Original image.
● Noise: A layer of calculated, 

human-imperceptible Noise is added.
● Modified: The resulting Modified image 

looks identical to our eyes, but its "fingerprint"
—its embedding—is now the same as the high-value Target image.



Security and Privacy Challenges: A Marketplace Under Siege

Threat 
Category

The Adversary's Goal

Privacy Attacks To reconstruct 
sensitive, private 
training data from the 
shared gradient.

Integrity 
Attacks

To corrupt the model's 
performance or install a 
hidden, malicious 
trigger.





Gradient Valuation
Instead of trading raw data or its indirect proxies, a Gradient Marketplace creates a more 
secure system by trading the direct output of machine learning: the model gradients 
themselves.

How It Works: Frameworks like martFL* provide the architecture for this model:

Direct Inspection: A selection filter is used to directly inspect the quality and utility of each 
incoming model update (gradient). It rejects contributions that are malicious or low-quality.

"What You See Is What You Get": The buyer receives the exact same gradient that was 
just evaluated by the filter.

*Li et al., "martFL: Enabling Utility-Driven Data Marketplace with a Robust and Verifiable Federated Learning Architecture," ACM Computer and 
Communications Security Conference 2023.



The MartFL Life Cycle
Request: A model owner submits a training task to the 
marketplace.

Select: The MartFL Orchestrator uses its two-phase 
filter to select the most valuable data owners.

Train: The selected owners compute gradients on 
their private data.

Improve: MartFL aggregates the gradients, ensures 
fair payment, and delivers a single, powerful update to 
the model owner.



The New Threat: Malicious Gradient Attacks
In a gradient marketplace, the threat shifts from faking value to 
actively sabotaging the training process.

A Malicious Client's Goal:

● Get paid for contributing nothing of value.
● Poison the global model, reducing its accuracy for their 

own benefit.

The Method:

Submit useless or deliberately harmful gradients instead of 
honest ones.



How MartFL Filters Malicious Gradients
● Create a Baseline: A "trusted baseline" is 

established using the buyer's clean reference 
gradient combined with past contributions from 
high-quality sellers.

● Measure Similarity: The system calculates the 
cosine similarity between each new gradient and the 
trusted baseline.

● Filter Outliers: Any gradient with low similarity is 
flagged as an outlier and rejected, filtering out 
potentially malicious or useless updates.



The Potential Flaw: Can Similarity Be Fooled?
This leads to two key research questions for our 
analysis:

Robustness: How well does similarity filtering 
actually detect various malicious attacks?

Fairness: Does this filtering mechanism unfairly 
penalize honest clients who hold valuable, 
non-mainstream (outlier) data?

Global Update Direction Malicious Client Honest Client

Malicious Attack Blocked Valuable Contribution Lost!

Similarity Filter

Low Similarity Low Similarity

Rejected Rejected



The Blind Spot in Gradient Marketplace Evaluation
A system can be technically perfect and secure, but economically broken.

To build a truly successful marketplace, we must evaluate the entire ecosystem. 
Our framework integrates three crucial marketplace-centric metrics.

Model Robustness

The Question: Is the 
final trained model 
accurate, reliable, and 
secure against attacks?

Marketplace Stability

The Question: Is the 
system fair and stable for 
its participants?

Economic Viability

The Question: Is the 
marketplace 
economically efficient? 
Does the performance 
gain justify the cost?



Key Evaluation Dimensions
Robustness: Does the filter stop the 
attack? 

Economic Efficiency: What is the true 
cost for the buyer to achieve their 
goal?

Fairness & Stability: Are honest sellers 
treated fairly, or are they penalized?

Selection Dynamics: Who is the filter 
actually selecting, and how often is it 
fooled?



Case Study: Can the Marketplace Survive a Backdoor Attack?

The Attacker's Playbook

Our Analysis 

Step 1: Poison the Source Data
The attacker adds a trigger (e.g., a white 
square) to a "cat" image and maliciously 
labels it as a "dog."

Step 2: Submit the Malicious Gradient
The attacker offers the harmful gradient, 
learned from this poisoned data, for sale in 
the marketplace.

Analysis of Step 1: Security 
Effectiveness

Our framework asks:
✅ Can the selection filter detect the 
malicious gradient's signature?
✅ Can it prevent the poison from 
compromising the global model?

Analysis of Step 2: Economic & Fairness 
Impact

Our framework asks:
⚖ What is the collateral damage? Are 
benign, honest sellers unfairly penalized or 
rejected by stricter filtering triggered by the 
attack?



Two Attack Scenarios
Attack 1: The Standard Backdoor Attack 2: The Sybil "Mimicry" Backdoor

The Strategy: Brute Force. The adversary 

submits a standard poisoned gradient and simply 

hopes it bypasses the marketplace filter.

The Strategy: Deception & Camouflage. This is a more 

intelligent, two-step attack:

a) Learn What Passes: The adversary identifies the 

characteristics of benign gradients that are successfully 

selected.

b) Blend the Attack: They combine their malicious 

backdoor gradient with this benign "camouflage" to create a 

new gradient that looks trustworthy.



Result - Final model performance
The Illusion (Blue Line): The model's 
performance on its main task remains 
high and stable, suggesting the system 
is healthy.

The Reality (Red Line): 
Simultaneously, the Attack Success 
Rate skyrockets, proving the model is 
being successfully poisoned with a 
hidden backdoor.



Mechanism of Failure: Why the Filter Was Fooled
Despite the filtering 
mechanism, a sufficient 
volume of malicious 
updates evaded 
detection, enabling the 
backdoor attack to 
succeed.



"Deceptive Efficiency" of an Attacked Market
● The Sybil-attacked market reaches 

the target accuracy with 23% less 
cost (fewer gradients purchased).

● From a purely economic standpoint, 
the attacked market looks more 
efficient. A buyer optimizing solely for 
cost would inadvertently prefer the 
compromised environment. This 
makes the attack even harder to 
detect through economic signals.



Economic Fallout: Who Really Pays the Price?
No Attack: Honest sellers earn 100% of the 
revenue.

Sybil Attack: Honest seller revenue 
plummets by 40%. Attackers successfully 
extract nearly a quarter of all payments.

The market isn't more efficient. Attackers are 
simply crowding out and defunding honest 
contributors, creating an unsustainable 
economy.



Data Discovery Dilemma: Diversity vs. Security
1. The Marketplace Dilemma

A realistic marketplace needs data diversity. 
However, this creates a fundamental conflict 
for similarity-based security filters.

2. The Mechanism of Failure

With Homogeneous Data: The filter works. 
Malicious gradients are easy-to-spot outliers. 
✅ 

With Heterogeneous Data: The filter 
collapses. It cannot distinguish between 
"benign diversity" and "malicious intent". ❌



Key Takeaways

Finding Implication

1. The Attack Surface Has 
Shifted.

The primary vulnerability is now the marketplace's economic and 
selection mechanisms.

2. Standard Metrics Are 
Deceptive.

High accuracy and low cost can mask catastrophic security failures 

and unfair outcomes.

3. Similarity-Based Defenses 
Are Brittle.

They are fundamentally vulnerable to mimicry and fail in diverse, 
realistic environments.



Saibot:
Differentially Private 
Task-based Search

(back to centralized search)
Huang et al.  VLDB 23



Greedy

Task-based Search: Basic Algorithm

Use sketches 

D = initial training dataset

for next augmentation 𝛂
if eval(apply A to D) is best so far

Keep 𝛼 in A
return best A

But can we enforce differential privacy?



Differential Privacy

30

Privatization: Differential Privacy(DP) Algorithm

Pr[M(D)∈S] ≤ exp(𝜖) * Pr[M(D')∈S] + 𝛿

Informally, an algorithm satisfies DP if no single record can be inferred

● Hides individuals in a dataset by adding noise to results

● Each query consumes part of a dataset’s finite budget

● Consumed budget ∝ noise added to result



Differential Privacy: Privacy Budget

31

D

A Y

a1 1

a1 2

Remaining budget: 

(𝜖, 𝛿)

SELECT SUM(Y) FROM D

Privacy budget: (𝜖, 𝛿)



Differential Privacy: Privacy Budget
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D

A Y

a1 1

a1 2

SELECT SUM(Y) FROM D

1 + 2 + noise𝜖, 𝛿 = 4.2

Remaining budget: 

(0, 0)

Privacy budget: (𝜖, 𝛿)



Differential Privacy: Privacy Budget
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D

A Y

a1 1

a1 2

SELECT SUM(Y*Y) FROM D

Remaining budget: 

(0, 0)

Privacy budget: (𝜖, 𝛿)



Differential Privacy: Privacy Budget

34

D

A Y

a1 1

a1 2

SELECT SUM(Y*Y) FROM D

No privacy budget, cannot access

Remaining budget: 

(0, 0)

Privacy budget: (𝜖, 𝛿)



Differential Privacy Mechanisms Available
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Search System

Provider Provider
LDPToo much noise to 

be useful

GDPUses budget on 
every model eval



Data Task

36

Example: Predicting churn

Churned Customer Subscription 
Date

Yes Alice Jan 2023

No Bob May 2023

ML data augmentation search

Yes Charlie Feb 2023

No David Jan 2023

❖ More samples to union with.

Most
Visited

Unemployment
Rate

Products 6.5%

Support 3.2%

Support 8.1%

Home 6.5%

❖ More features to join with.



DP ML Data Augmentation: Input and Output
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Search System

Individuals

Search system
Aggregator

Requester Provider
Data requesters/
Data providers

Data Task Aggregator

Not trusted
Patients don’t trust Google to use 
health data for ads.

Trusted
Patients trust their health tracking 
App, like Fitbit.

Want to find health data to improve 
cardiac prediction models



DP ML Data Augmentation: Input and Output

38

Search System

Individuals

Search system
Aggregator

Requester Provider
Data requesters/
Data providers

Data Task Aggregator

Provide individual tuple

Input dataset

Output data and model



Existing Approach Limitations: Global DP

39

Search System

Requester Provider

Global DP mechanisms add noise 
before releasing the output.

Evaluating each combination drains 
privacy budget.

Data Task Aggregator

Exponential combinations of 
join/union-compatible sets.

Global DP 

Census bureau
Aggregator

State government

Individuals
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Local DP mechanisms add noise to 
each customer’s data.

Augmentations too noisy, difficult to 
distinguish useful ones.

Search System

Requester Provider

Local DP 

Data Task Aggregator

Existing Approach Limitations: Local DP

Customers

Apple Server
Aggregator

Analyst
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Search System

Data Task Aggregator

Shuffle DP Shuffler Shuffler

Requester Provider

Shuffle DP mechanisms add noise to 
each customer’s data, then shuffle 
to enhance privacy.

Only enhance privacy levels for large 
datasets.

Existing Approach Limitations: Shuffle DP

Customers

Apple/Google



Prior Mechanisms Don’t Scale
To repository size & number of requests
Vary between 10 - 329 NYC Open Datasets in Repo
Query: Grad table to predict 2016-17 graduation outcomes.

42

Repository size

No privacy

LDP
Shuffle
GDP 

Final Model 
Accuracy



Sketch-based Approach
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Search System

Data Task Aggregator

Individuals

Search system
Aggregator

Requester Provider
Data requesters/
Data providers

Precompute private sketches

Linear reg. as proxy to assess accuracy
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Sketch-based Search

Linear regression has closed form solution



A sum(Y2) sum(Y) count

a1 12+22 1+2 2

45

Monomial semi-ring

A Y

a1 1

a1 2

D

Sum of 0th, 1st, 2nd-order monomials

Sketch-based Search

How to compute sum of pairwise product between features? 

Compute aggregates 
as sketches
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A Y

a1 1

a1 2

R

A B

a1 1

a1 2

D

Linear regression on D⋈R requires computing  ∑1, ∑B, ∑Y, ∑BY

A Y B

a1 1 1

a1 1 2

a1 2 1

a1 2 2

D ⋈ R

⨝

= 9

Sketch-based Search
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Linear regression on D⋈R requires computing  ∑1, ∑B, ∑Y, ∑BY

A Y B

a1 1 1

a1 1 2

a1 2 1

a1 2 2

D ⋈ R

⨝

Sketch-based Search

A Y

a1 1

a1 2

R

A B

a1 1

a1 2

D

= 9
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Linear regression on D⋈R requires computing  ∑1, ∑B, ∑Y, ∑BY

1st-order

A sum(Y)

a1 1+2

Sketch-based Search

A Y B

a1 1 1

a1 1 2

a1 2 1

a1 2 2

D ⋈ R

⨝
A Y

a1 1

a1 2

R

A B

a1 1

a1 2

D

= 9
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Linear regression on D⋈R requires computing  ∑1, ∑B, ∑Y, ∑BY

1st-order

A sum(B)

a1 1+2

Sketch-based Search

A Y B

a1 1 1

a1 1 2

a1 2 1

a1 2 2

D ⋈ R

⨝
1st-order

A sum(Y)

a1 1+2

= 9

A Y

a1 1

a1 2

R

A B

a1 1

a1 2

D
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Linear regression on D⋈R requires computing  ∑1, ∑B, ∑Y, ∑BY

A sum(B×Y)

a1 3×3

= 9

2nd-order

Sketch-based Search

⊗

1st-order

A sum(B)

a1 1+2

1st-order

A sum(Y)

a1 1+2

A Y

a1 1

a1 2

R

A B

a1 1

a1 2

D
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Linear regression on D⋈R requires computing  ∑1, ∑B, ∑Y, ∑BY

⊗

Sketch-based Search

1st-order

A sum(B)

a1 1+2

1st-order

A sum(Y)

a1 1+2

A Y

a1 1

a1 2

R

A B

a1 1

a1 2

D
A Y B

a1 1 1

a1 1 2

a1 2 1

a1 2 2

D ⋈ R

= 9



Saibot: Our Contribution
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Search System

Data Task Aggregator

Shuffler Shuffler

Individuals

Search system
Aggregator

Requester Provider
Data requesters/
Data providers

Factorized Privacy Mechanism

Saibot Privatize sketches so downstream 
search will be privatized.

Intuition: aggregate datasets as much as possible before adding noise to them.



Saibot: Technical Details

❖ Factorized Privacy Mechanism (FPM).

❖ Noise allocation optimization.

❖ Unbiased estimation.

❖ Proofs
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Saibot: Technical Details
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❖ Factorized Privacy Mechanism (FPM).

❖ Noise allocation optimization.

❖ Unbiased estimation.

❖ Proofs



Saibot: Assumptions

The schema and join keys for datasets owned by providers are public

● Oblivious intersection techniques can be applied.

All tuples are L2 bounded by B (for analysis)

● Categorical features numericalized 

55



FPM:Privatize sketches with privacy budget (𝜖, 𝛿)
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A sum(Y2) sum(Y) count(Y)

a1 12 1 1

Q: SELECT SUM(Y2), SUM(Y), COUNT(Y) from D GROUP BY A

Use existing DP query engine

QA Y

a1 1

D
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Q: SELECT SUM(Y2), SUM(Y), COUNT(Y) from D GROUP BY A

A Y

a1 1

D

A sum(Y2) sum(Y) count(Y)

a1 22 2 1

A Y

a1 2

D’
Neighbour

Q

FPM:Privatize sketches with privacy budget (𝜖, 𝛿)

Use existing DP query engine

Q A sum(Y2) sum(Y) count(Y)

a1 12 1 1
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Sensitivity of Q: 𝚫(Q) = ǁQ(D) - Q(D’)ǁ
2

FPM:Privatize sketches with privacy budget (𝜖, 𝛿)

Use existing DP query engine

L2 distance

A Y

a1 1

D

A Y

a1 2

D’
Neighbour

Q

Q

A sum(Y2) sum(Y) count(Y)

a1 22 2 1

A sum(Y2) sum(Y) count(Y)

a1 12 1 1
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A sum(Y2) sum(Y) count(Y)

a1 12 1 1

FPM:Privatize sketches with privacy budget (𝜖, 𝛿)

Use existing DP query engine

A Y

a1 1

D

Q

Q: SELECT SUM(Y2), SUM(Y), COUNT(Y) from D GROUP BY A

Budget
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A sum(Y2) sum(Y) count(Y)

a1 12+e1 1+e2 1+e3

FPM:Privatize sketches with privacy budget (𝜖, 𝛿)

Use existing DP query engine

A Y

a1 1

D

Q

e
1
, e

2
, e

3   
ᯈ

Q: SELECT SUM(Y2), SUM(Y), COUNT(Y) from D GROUP BY A
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Naive Solution Limitation:Combining Sketches

A sum(Y2) sum(Y) count(Y)

a1 12+e1 1+e2 1+e3

A sum(C2) sum(C) count(C)

a1 22+e’1 2+e’2 1+e’3

A sum(C2) sum(Y2) sum(C×Y) sum(C) sum(Y) count

a1 (22+e’1)(1+e3) (1+e’3)(1
2+e1) (2+e’2)(1+e2) (2+e’2)(1+e3) (1+e’3)(1+e2) (1+e’3)(1+e3)
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Naive Solution Limitation:Combining Sketches

A sum(Y2) sum(Y) count(Y)

a1 12+e1 1+e2 1+e3

A sum(C2) sum(C) count(C)

a1 22+e’1 2+e’2 1+e’3

A sum(C2) sum(Y2) sum(C×Y) sum(C) sum(Y) count

a1 (22+e’1)(1+e3) (1+e’3)(1
2+e1) (2+e’2)(1+e2) (2+e’2)(1+e3) (1+e’3)(1+e2) (1+e’3)(1+e3)
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Naive Solution Limitation:Combining Sketches

A sum(Y2) sum(Y) count(Y)

a1 12+e1 1+e2 1+e3

A sum(C2) sum(C) count(C)

a1 22+e’1 2+e’2 1+e’3

A sum(C2) sum(Y2) sum(C×Y) sum(C) sum(Y) count

a1 (22+e’1)(1+e3) (1+e’3)(1
2+e1) (2+e’2)(1+e2) (2+e’2)(1+e3) (1+e’3)(1+e2) (1+e’3)(1+e3)
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Naive Solution Limitation:Combining Sketches

A sum(Y2) sum(Y) count(Y)

a1 12+e1 1+e2 1+e3

A sum(C2) sum(C) count(C)

a1 22+e’1 2+e’2 1+e’3

A sum(C2) sum(Y2) sum(C×Y) sum(C) sum(Y) count

a1 (22+e’1)(1+e3) (1+e’3)(1
2+e1) (2+e’2)(1+e2) (2+e’2)(1+e3) (1+e’3)(1+e2) (1+e’3)(1+e3)
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Noise Allocation

How to draw noise from different distributions to aggregations?

count(Y)

1+e3

sum(Y)

1+e2

sum(Y2)

12+e1
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Noise Allocation

How to draw noise from different distributions to aggregations?

Sensitivity
O(B2)

Sensitivity
O(B)

Sensitivity
O(1)

count(Y)

1+e3

sum(Y)

1+e2

sum(Y2)

12+e1
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Noise Allocation

How to draw noise from different distributions to aggregations?

count(Y)

1+e3

sum(Y)

1+e2

sum(Y2)

12+e1

e

1

e

2

e

3
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Noise Allocation

How to draw noise from different distributions to aggregations?

e

1

e

2

e

3
𝜖/3 𝜖/3 𝜖/3 

count(Y)

1+e3

sum(Y)

1+e2

sum(Y2)

12+e1
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Noise Allocation: Analysis

Bounding linear regression estimator:
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Noise Allocation: Analysis

Bounding linear regression estimator:

Naive Method:
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Noise Allocation: Analysis

Bounding linear regression estimator:

Naive Method:

Optimization:
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Reduce the bound on linear regression parameter by O(B2)

Noise Allocation: Analysis

Bounding linear regression estimator:

Naive Method:

Optimization:



FPM Scales 

To repository size & number of requests
Vary between 10 - 329 NYC Open Datasets in Repo

73

Final Model 
Accuracy

Repository size

No privacy

LDP
Shuffle
GDP 

Mileena



No privacy LDP     Shuffle    GDP Mileena



No privacy LDP     Shuffle    GDP Mileena



Part 4: Regulatory 
Considerations



Agenda
Goal: Overview (but not exhaustive!)

• Background and Motivation

• Legal Landscape: Key Frameworks

• Translating Frameworks to Implementations

• Security and Breach Notification Requirements

• Cross-border Data Flows

• Technical-Legal Interplay



Story: Why Legal Considerations are Important
Case Study: What counties/states in

the U.S.A have better or worse

 economic/social mobility?

https://opportunityinsights.org/ 

https://opportunityinsights.org/


Story: Why Legal Considerations are Important
Case Study: What counties/states in the U.S.A

have better or worse economic/social mobility?

Solution: Use statistical methods and

quantitative social science to study the

question.

https://opportunityinsights.org/ 

https://opportunityinsights.org/


Story: Why Legal Considerations are Important
“...There are several steps in our estimation process. We begin by combining three sources of [...] data linked 
by and housed at the Census Bureau (the 2000 and 2010 Decennial Census short forms; federal income tax 
returns for 1984, 1989, 1994, 1995, and 1998-2019; and the 2000 Decennial Census long form and the 
2005-2019 American Community Surveys) to construct an analysis sample of Americans born between 
1978-1992. We map these individuals back to the counties where they lived as children and measure their 
outcomes at age 27 (between 2005-2019). Parent and child income are measured using their percentile ranks 
in the national income distribution….”

Source: https://opportunityinsights.org/policy/frequently-asked-questions/ 

https://opportunityinsights.org/policy/frequently-asked-questions/


Story: Why Legal Considerations are Important
Case Study: What counties/states in

the U.S.A

have better economic/social mobility?

First, collect raw data from IRS, Census Bureau.

But Census Bureau needs to adhere to

Title 13.

Screw up, then employees go to jail!



Title 13 and U.S. Census Bureau

Source: https://www.census.gov/history/www/reference/privacy_confidentiality/title_13_us_code.html 

https://www.census.gov/history/www/reference/privacy_confidentiality/title_13_us_code.html


Title 13 and U.S. Census Bureau

Source: https://www.census.gov/history/www/reference/privacy_confidentiality/title_13_us_code.html 

https://www.census.gov/history/www/reference/privacy_confidentiality/title_13_us_code.html


Bridging the Gap: Technical vs. Legal



Bridging the Gap: Technical vs. Legal

“...the fields of law and computer science have generated different 
notions of privacy risks in the context of the analysis and release of 
statistical data about individuals…”

Source: Bridging the gap between computer science and legal approaches to privacy (Harv. JL & Tech.)

https://heinonline.org/hol-cgi-bin/get_pdf.cgi?handle=hein.journals/hjlt31&section=27


Bridging the Gap: Technical vs. Legal

“...this article articulates the nature of the gaps between legal and 
technical approaches to privacy in the release of statistical data about 
individuals. It also presents an argument that the use of differential 
privacy is sufficient to satisfy the requirements of the Family Educational 
Rights and Privacy Act of 1974 (FERPA), a federal law that protects the 
privacy of education records in the United States. This argument 
illustrates what may evolve to a more general methodology for 
rigorously arguing that technological methods for privacy protection 
satisfy the requirements of a particular information privacy law…”

Source: Bridging the gap between computer science and legal approaches to privacy (Harv. JL & Tech.)

https://heinonline.org/hol-cgi-bin/get_pdf.cgi?handle=hein.journals/hjlt31&section=27


Bridging the Gap:Title 13 and U.S. Census Bureau 

“... In this way, the mathematical proof demonstrates that the use of 
differential privacy is sufficient to satisfy a broad range of reasonable 
interpretations of FERPA, including interpretations that may be 
adopted in the future…”

Source: Bridging the gap between computer science and legal approaches to privacy (Harv. JL & Tech.)

https://heinonline.org/hol-cgi-bin/get_pdf.cgi?handle=hein.journals/hjlt31&section=27


Step 1: Interpret Privacy Law

Source: Bridging the gap between computer science and legal approaches to privacy (Harv. JL & Tech.)

https://heinonline.org/hol-cgi-bin/get_pdf.cgi?handle=hein.journals/hjlt31&section=27


Step n+1: Translate into Technical Terms

Source: Bridging the gap between computer science and legal approaches to privacy (Harv. JL & Tech.)

https://heinonline.org/hol-cgi-bin/get_pdf.cgi?handle=hein.journals/hjlt31&section=27


Why Legal Considerations Matter
• Legal frameworks define data rights and duties

• Legal compliance is essential for trust and adoption

• Distributed data markets complicate governance

• Liability concerns for data market platforms (e.g., Opportunity Insights)



Compliance in Distributed Data Markets

• Key challenge: Trust among parties with differing incentives

Examples: 

(1) Opportunity insights ⇔ Census Bureau (Title 13)

(2) Hospitals ⇔ Health Insurance Companies (HIPAA)



Legal Foundations (Global Overview)

• GDPR (EU)

• CCPA/CPRA (California), HIPAA (US), Title 13 (US) 

• Varying consent, data definitions, cross-border rules



Further Examples of Translation (GDPR)

• Legal: Purpose limitation

“…Personal data shall be collected for specified, explicit and legitimate purposes and 
not further processed in a manner that is incompatible with those purposes; further 
processing for archiving purposes in the public interest, scientific or historical 
research purposes or statistical purposes shall, in accordance with Article 89(1), not 
be considered to be incompatible with the initial purposes (‘purpose limitation’)...”

• Technical: Can’t collect data for academic research and sell to advertisers

Source: https://gdpr-info.eu/art-5-gdpr/ 

https://gdpr-info.eu/art-89-gdpr/
https://gdpr-info.eu/art-5-gdpr/


Further Examples of Translation (GDPR)

• Legal: Purpose limitation and data minimization

“…Personal data shall be collected for specified, explicit and legitimate purposes and 
not further processed in a manner that is incompatible with those purposes; further 
processing for archiving purposes in the public interest, scientific or historical 
research purposes or statistical purposes shall, in accordance with Article 89(1), not 
be considered to be incompatible with the initial purposes (‘purpose limitation’)...”

“…Personal data shall be adequate, relevant and limited to what is necessary in 
relation to the purposes for which they are processed (‘data minimisation’);...”

• Technical: Can’t ask for SSN when signing up for blog

Source: https://gdpr-info.eu/art-5-gdpr/ 

https://gdpr-info.eu/art-89-gdpr/
https://gdpr-info.eu/art-5-gdpr/


Further Examples of Translation (GDPR)
• Legal: Breach notification mandates (e.g., GDPR Art. 33)

“...In the case of a personal data breach, the controller shall without undue delay and, where 
feasible, not later than 72 hours after having become aware of it, notify the personal data 
breach to the supervisory authority competent in accordance with Article 55, unless the 
personal data breach is unlikely to result in a risk to the rights and freedoms of natural persons. 
Where the notification to the supervisory authority is not made within 72 hours, it shall be 
accompanied by reasons for the delay. The processor shall notify the controller without undue 
delay after becoming aware of a personal data breach…”

• Technical: Send notifications to supervisory authority

Source: https://gdpr-info.eu/art-33-gdpr/ 

https://gdpr-info.eu/art-55-gdpr/
https://gdpr-info.eu/art-33-gdpr/


Takeaways

• Legal frameworks shape privacy/security protocols

• Legal compliance ≠ technical privacy

• Must align PETs (Privacy-Enhancing Technologies) with regulatory requirements

• Learn about compliance from lawyers!!!



Part 5: Open Problems



Data Market/Data Discovery

Privacy Challenges Are Everywhere!

Data DataData

Query interface
Latency, Scalability
Privacy risks

Query specification
Privacy risks

Data acquisition
Data preparation
Privacy risks

Stats Stats Stats



Protect Information in Data Markets 
1. Protect buyers from malicious sellers
2. Protect sellers from malicious buyers
3. Prevent unauthorized users from accessing:

a. Seller private data
b. Buyer private data
c. Platform private data

4. Prevent manipulation of data acquisition mechanisms:
a. Data discovery
b. Data valuation
c. Data negotiation
d. Data delivery



Privacy and Security Attacks
● Naively allowing query access to data markets is risky for users/orgs

○ Linkage attacks
○ Reconstruction attacks
○ Inference attacks
○ Plaintext/ciphertext attacks

● Naive designs of data markets is risky for valuation
○ Manipulation of pricing and negotiation mechanisms
○ Less trust in data markets

Motivates the need for robust privacy and security protections.

We need more attacks for illustrative and motivational purposes.



Privacy and Security Attacks
● Naively allowing query access to data markets is risky for users/orgs

○ Linkage attacks
○ Reconstruction attacks
○ Inference attacks
○ Plaintext/ciphertext attacks

● Naive designs of data markets is risky for valuation
○ Manipulation of pricing and negotiation mechanisms
○ Less trust in data markets

Motivates the need for robust privacy and security protections.

We need more methods to protect against attacks.



Research Questions for Legal Considerations
• Can we cryptographically enforce legal policies?

• What counts as legally sufficient anonymization?

• Consent revocation in distributed systems?



Data Ownership and Stewardship
• Ambiguity in data and model ownership

• Data Controller vs. Data Processor roles

• Tension between legal rights and cryptographic control



An Agentic Web is a Data Market
Agent-friendly protocols like MCP sidestep web UIs completely

● No GUI, no user, just APIs and automation
● “The web is a series of databases” - Sundar Pichai on Decoder Podcast

In an agentic world, every “website” is a database API + business logic…

● Arrow’s paradox? Pricing? Privacy? Security? Discovery? Market structure?



More Future Directions
Our investigation into data marketplaces reveals critical challenges for building secure, decentralized AI 
systems.

1. The Attack Surface Has Shifted.

The primary vulnerability is not just the model, but the marketplace's economic and selection mechanisms.

2. Standard Metrics are Deceptive.

High model accuracy and low cost can mask catastrophic security failures and unfair economic outcomes.

3. Similarity-Based Defenses are Not a Silver Bullet.

They are fundamentally vulnerable to mimicry attacks and struggle most in the realistic, heterogeneous 
environments they are designed for.



Path Forward: Building a Robust Data Economy
To build truly secure and equitable marketplaces, future work must move beyond 
simple similarity checks. We need to focus on:

● Orthogonal Trust Signals: Integrating seller reputation, transaction history, 
and data provenance to make more holistic trust decisions.

● Multi-Stage Filtering: Designing a defense-in-depth pipeline that combines 
anomaly detection, similarity checks, and impact analysis.

● Incentive-Compatible Mechanisms: Creating reward and selection systems 
that are provably resilient to strategic manipulation and fairly compensate true 
value.



Funding Acknowledgements & Questions


